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J. Phys. A: Math. Gen., 13 (1980) 675-688. Printed in Great Britain 

On two integro-diff erential equations arising in particle 
transport theory 
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Road, London El 4NS, UK 

Received 23 May 1919 

Abstract. Two integro-differential equations arising in particle transport theory are solved 
explicitly using a technique involving difference equations. The physical problems to which 
these equations apply concern the energy-time and energy-space distributions of fast 
particles (neutrons, atoms, y-rays, etc) as they slow down in a host medium. One of the 
equations involves the first-order derivative with respect to time or space and describes 
particles which scatter essentially in the forward direction. The other equation assumes a 
diffusive motion with almost isotropic scattering and hence involves a second-order space 
derivative. 

Solutions are obtained in heterogeneous media where the number density of scatterers 
varies continuously in space and also for a series of contiguous slabs in which the material 
properties remain constant but change discontinuously from slab to slab. 

The slowing-down density and energy deposition functions are discussed and evaluated 
explicitly in some special cases. 

1. Introduction 

The statistical distribution of free particles in a scattering and absorbing medium can be 
described to a high degree of accuracy by the Boltzmann transport equation (Ferziger 
and Kaper 1972). In its linearised form this equation is used to calculate neutron 
distributions in nuclear reactors (Davison 1957), displacement damage due to cascades 
of fast atoms (Leibfried 1965), y-ray penetration (Fano et al 19-59), rarefied gas flows 
(Cercignani 1975) and many other related problems (Allis 1956, Bharucha-Reid 1960). 

In general, when the appropriate boundary conditions are given, the resulting 
mathematical problem is difficult to solve analytically and recourse must be made to 
direct numerical or other approximate methods. It is important therefore to establish 
for certain ideal but nevertheless realistic situations some exact analytical solutions of 
the Boltzmann equation. These solutions may then be used as benchmarks against 
which approximate methods may be calibrated and assessed. This philosophy is not 
confined to transport theory but it is particularly important in that field because of the 
unusual complexity and singular nature of the transport equation. 

In this paper we shall discuss two equations which describe the slowing down of fast 
particles in a medium which can have a certain degree of heterogeneity, that is, the 
density of scattering centres may vary with space or time. The dependent variable is the 
density of particles N(E ,  t )  where N ( E ,  t )  d E  dt is the number of particles with energies 
between E and E + d E  whose t coordinate lies between t and t + dt. The variable t can 
represent space or time depending upon the physical situation under consideration. We 
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676 M M R Williams 

shall be particularly concerned with the infinite medium problem of a pulsed source, 
that is the evolution of the energy spectrum as a function of time following the release of 
a mono-energetic, instantaneous burst of particles. Physically, this may correspond to 
neutrons or fast atoms slowing down in a host medium. However, the problem may be 
reinterpreted by associating t with the spatial variable (say 2). Then we have the 
problem of mono-energetic fast particles emitted by a plane source and N(E,  t )  
describes the spatial variation of the energy spectrum. This problem is of great 
importance in neutron and y-ray shielding (Fano et a1 1959) and also in ion implan- 
tation and radiation damage (Williams 1979). However, in making the association 
between t and z ,  we calculate the so-called ‘path length’ distribution function. This 
measures the total distance travelled by particles through a zig-zag path rather than the 
projection of that distribution on the z axis. For many problems of practical interest, 
the scattering process is very highly biased in the forward direction and there is often 
little difference between a path length and its projection. For this reason, such a 
solution will have direct physical value. However, not all scattering laws possess this 
forward nature and in some situations it is found that a diffusive motion exists in which 
the average motion is almost isotropic. The spatial operator in the Boltzmann equation 
is then changed to a second-order differential one governed by an appropriate diffusion 
coefficient. This raises new mathematical problems but we shall see that the technique 
proposed herein, which is based upon the use of difference equations, can easily treat 
this new term. 

2. The basic equations for study 

It was stated in the Introduction that the dependent variable under study was the 
particle density N ( E ,  t ) .  In fact, we find it more convenient to change to a different 
dependent variable and a different independent one. Thus we introduce the lethargy U 
defined by 

U = ln(Eo/E) (1) 

V q E ,  t )N(E,  t )  = W E ,  t )  

where Eo is the source particle energy. We also consider the new dependent variable 

(2) 

which is the collision density since X(E, t )  is the scattering cross section and v is the 
velocity corresponding to energy E. Now changing to the variable U by 

@(U, t )  = Y ( E ,  t ) /dE/du/  (3) 

we find that the basic equation for study is (Williams 1966) 

a a 
at au 
- T ( &  t ) @ ( U ,  t ) + - ( h ( U ,  [)@(U, t ) ) + @ ( ~ ,  t )  

= [oudu’ K ( u  -U’; t )@(u’ ,  t )+S(u)S( t ) .  

In this equation we have defined 
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which is the mean time between collisions, and 

S(u, t )  e’ 
E o W ,  t )  

A(u, t )  = 

where S(u, t )  is the electronic stopping cross section, i.e. a frictional term arising from 
the small but finite energy losses caused by electron excitation (Leibfried 1965). 

Finally, we have K ( u  -U’; t )  which is the probability of a lethargy change (U -U‘) 
when a particle collides with a scattering centre. The dependence of K ( u  - U’; t )  on 
(U - U‘) alone is in itself an assumption but one which is frequently acceptable. 

We have written equation (4) as it applies to the time-dependent problem but, as we 
stated earlier, it may be reinterpreted if we make the replacement 

and change t to z throughout. Then we have the distribution from a plane mono- 
energetic source. 

If the diffusion approximation is employed then we make the replacement (Fano et 
a1 1959) 

--+ a @(u,z )  1 a 1 a @ ( u , z )  
a2 X(u ,  2) 3 a2 C ( u ,  2 )  a2 Z ( u , z ) ’  

Equation (4) with the two modifications implied by (7)  and (8) are the basic 
equations for study. Equations (4) and (7) we will designate as type A and equation (8) 
will be type B. 

3. General solutions 

In order to obtain closed form mathematical solutions it is necessary to introduce the 
following functional dependence on lethargy of the parameters in equation (4), viz: 

~ ( u ,  t )  = cO(t) e-ku (9) 

and 

S(u, t )  = So( t )  e-’”’. 

We also write 

v ( u )  = vo  e-Au 

for the velocity. Clearly A = 3 for equation (4) but if we set A = 0 then the modification 
in equation (7) can be readily included. We see therefore that 

and 

A(u, t )  = Ao(t) e-(’”tk-l)u. 
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3.1. Solution of type A equations 

Inserting equations (12) and (13) into equation (4) and defining the Laplace transform 
W 

&(s, t) = jo du e-”@(u, t )  

we see that the following differential-difference, or functional, equation arises: 

(15) 
d 
dt  
-TO(t)&(S + k - A ,  t)+sAo(t)&(s + p  + k - 1, t ) + [ l  - E ( $ ;  t)]&(~, t )=S(t) .  

We consider two possible cases: case (i) A = 1 - ,u and case (ii) p + k = 1. The reader 

Case (i) allows us to write equation (15) as 
should note that these cases are not always physically realisable. 

d 
--.ro(t)&(s+k-A, t)+l?(s; t)&(s, t)+sAo(t)&(s+k-h, t ) = S ( t )  
dt 

where 
H ( s ;  t )  = 1 -&; t) 

and case (ii) leads to 

d 
dt 
-TO(t)&(S + k - A ,  t)+[l?(s; t)+sAo(t)]&(s, t )=S(t) .  

Case (i). 

We consider case (i) and write 

&(s, t )  = P(s,  t)x(s, t )  (18) 
where P(s, t )  is a function to be defined. Inserting equation (18) into (16) we find 

d d 
-TO(~)X(S + k - A ,  t ) + ~ O ( t ) ~ ( s  + k - A ,  t )- logP(s+ k - A ,  t )  dt dt  

where P(s, t )  has been defined as the solution of the difference equation (Waller 1966) 

P(s  + k - A ,  t )  = R(s;  t )P(s ,  t). (20) 

We now assume that H ( s ;  t )  does not depend on t. This is a physically reasonable 
assumption if it is assumed that the heterogeneity in the medium has arisen from density 
changes rather than changes in the scattering properties of individual scattering centres. 
With this assumption, P(s,  t) = P ( s )  and we find 

Now, introduce the transforms 
m 

x(s, t )  = dw e-SWxF(w, t) 
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I P  
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(23) 

Equation (24) is a partial differential equation of first order and may be solved easily 
by the method of characteristics. We find 

XF(W, t )  = - exp[-(A - k)m(t, O)] exp{-e 1 ( k - h l w  - exp[-(k -A)m(t,  t’)]} 
TOO) 

where 

Inverting the transform we obtain 
-k)m(f,O) 

P(S)  @(U, t) = 1 I es(u-m(t ,o))  

~ ~ ( t )  27ri 

X Ioa d w o  e-swo exp(-e(k-A)woG(t))- - 
27Tl I L’ dp P(P)  ePWo 

where 

Now for k > A ,  we may rearrange a term in equation (27) such that 

(27) 

But the term involving 2 in equation (29) is the generating function for Laguerre 
polynomials. Thus we may write 

exp(-e‘k-A’G(t)) 
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Inserting (31) into (27) and carrying out the integration over w o  leads to 

exp[-(A -k)m(t, 0)-G(t)] 
@(U, t )  = C Ln(G(t)) 

TO( f )  n =O 

It is not necessary to obtain P(s)  explicitly here, although in some simple cases it may 
be preferable to do so. We can instead note from the difference equation (20) that 

We then have a complete solution in the sense of quadratures. It is useful to note 
that when A, = 0 and the parameter T~ is independent of t the solution reduces to 

When k = A a particularly simple form arises, viz: 

1 
@(U, t )  = - I ds exp su -tf i(s)  

21ri ( 70 

which could have been obtained directly from equation (15). 
If k < A  a different approach must be used. Then we must write 

We then follow the same procedure as before to arrive at 

But the difference equation gives 

(35) 
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which allows us after some further manipulation to write 

- ( u + l ) ( A - k ) m ( t , O ) L  

21ri 

Special case 

As an example of this technique let us assume that K ( u )  =e-', k = 1, A. = 0, A = 0. 
Then from equation (34) we may write 

fi-- s + l + l  s + v + l  -- 
1=0 s + l  S 

and -1 1 esu(l+%) d s = 6 ( u ) + v + l .  
2rri 

Hence, changing t /ro to ,?/Ao, we get 

Fortuitously, this expression possesses the same energy spectrum as the infinite 
medium spatially independent problem. In general, however, this is not the case. Thus 
for a more general kernel, say 

(44) 1 - u / v  K ( u )  = - e  
Y 

where H ( s )  = ys (1  + ys)-l we find that (see $ 5 )  -IL 1 ds esu fi 1 
21ri I = O  H ( s  + l (k  - A ) )  

where 2F1(. . .) is the hypergeometric function. 

Case (ii) 

Here we return to equation (17) and note that the solution of this problem is very simple 
provided Ao(t) and H(s; t )  are independent of t. Further if we define 

R(s) = A(s) + Aos (46) 
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we see that the resulting equation has the same form as equation (16) but with R 
replacing H and A. set equal to zero. Equation (34) therefore applies but with 

and 

H ( S + I ( k - A ) )  j R ( s + l ( k - A ) ) .  

3.2. Solution of type B equution 

Introducing equation ( 8 )  into (4) we find the diffusion equation 

1 d2 a 
3Z2(u)  az2 al'l 

_- -@(U, z )+@(u ,  z)+-(A(u)@(u, z ) )  

= 6" du'  K ( u  - u')(€J(u', z ) +  S ( u ) S ( z ) .  (49) 

We have assumed a homogeneous medium because it does not appear to be possible 
to obtain an analytical solution to equation (49) when Z and A depend upon z .  
However, in § 3.3 below, we indicate why this is not necessarily a serious restriction. 

In solving equation (49) we shall take the variation of cross sections given by (9) and 
(10) and in addition define L; by 

Application of the Laplace transform in lethargy leads then to 

d2 - 
dz 

- L i y @ ( s + 2 k ,  ~ ) + s h ~ & ( ~ + p , + k - l ,  z ) S - H ( s ) & ( s ,  z ) = S ( Z ) .  

This may be solved if p, + k = 1 or if p, - k = 1 for A. Z 0. For A. = 0 there is no 
restriction on k. We will assume that p, + k = 1 and write equation (51) as 

d2 - 
dz 

- L i y ( € J ( s  + 2 k ,  z ) + R ( s ) G ( s ,  z ) = S ( Z ) .  

Now introducing 

G(s, z )  = Q ( s ) x ( s ,  z )  
where Q ( s )  is defined by 

Q ( s + 2 k ) = R ( s ) Q ( s )  

we find that 

Using the XF transform of equations ( 2 2 )  and (23 )  we find 

( 5 3 )  

(54) 
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whence for an infinite medium 

@(U, z )  = - - ds e""Q(s) 
2L0 " I  217i 

In order to cast equation (57) into a suitable form for calculation we take the Fourier 
transform with respect to z ,  whence it becomes 

Now we rearrange the term involving t'such that 

1 + 5 ' ~ ;  e-2kw - 1 + t2~?, - (1 - e-2kw)e2Lz 
1 - 1 

But clearly 

where Z',,(y) are a set of polynomials. The Z , ( y )  are unrelated to any standard 
polynomials but the first few are 

T O ( Y  = 1 

2 l ( Y  1 = i(1 - Y 1 
% ( Y )  = 3 3  - 5 Y  + Y 2 ,  

Z'3(y) =&15-33y +12yZ-y3) .  

Inserting (59) into (58) and using (60) we find after integrating over w that 

(62) 
1 1 

@(U, 2) =-e 1 -izl/Lo f =%(E) f (:)(-l)'-/ ds est' r = o R ( ~ + 2 l k ) '  fi 
2L0 n = o  " = O  2771 L 

When A, = 0 and K ( u )  = e-"'Y/y we may write the inversion integral as in equation 
(45) but with (k - A )  replaced by 2k. It is therefore obvious that in the special case of 
y = 1 and k = $ the solution assumes the form 

3.3. A repeating slab structure 

Although the degree and nature of the heterogeneity in the t or z variables are limited 
in the above solutions, it is possible to extend the usefulness of the homogeneous 
medium solutions. This can be done in the particular case of a repeating slab structure 
where the properties of the medium change in a stepwise fashion from slab to slab. In 
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fact, this situation is very common in nuclear reactors and in ion implantation problems 
(Williams 1971, 1979) and so is worthy of discussion. 

We consider the homogeneous form of equation (4) with ~ / T ( u )  replaced by Z X ( U )  
and A = 0. In this case the source will be located in one slab only and the solution will be 
given by equation (27) with 

m ( z ,  0) = AOZoz (64) 

and 

k A L z  G ( z )  =-(e O O -1). 
k Ao 

(65) 

This solution, which we call Ql(u ,  z ) ,  will be valid until the new material is reached 
say at z = 0. Then the new equation to be solved is the homogeneous form of equation 
(4) with the new material properties and the boundary condition of continuity of 
particle density, i.e. 

Nib, a )  =Nz(u, a )  (66) 

where the subscripts 1 and 2 refer to the media on each side of the discontinuity. To 
obtain N2(u, z )  we solve equation (4) in the same manner as before up to equation (24). 
In the region z > a, equation (34) is solved with no source term and we find 

but from the boundary condition (66) we may write 

ZOZ&~(S + kl - kz, U )  = ZO~&(S, U ) .  

Thus 

and the distribution in z > a can be written 

Since we know Q1(s, a )  we have the complete solution. This procedure may be 
carried through for any number of contiguous slabs. A practical example of this 
technique has been discussed by the author (Williams 1978). 

4. The slowing-down density and energy deposition 

In the physics of particle slowing down, two important quantities arise. They are the 
slowing-down density q ( ~ ,  t )  which is the number of particles crossing the lethargy U 

per unit time, and the slowing-down energy density W ( U ,  t ) ,  which is the amount of 
energy possessed by the particles crossing lethargy U per unit time. 
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By definition we may write (Williams 1966): 

q ( u ,  t )  = [’ du’ @(U’, t )  
m 

du” K(u”-  U‘) 
-m 

and 
m 

W(u,  t )  = EO j-: du’  @(U’, t )  du” e-’”K(u”- U’). 

In terms of Laplace transforms these quantities assume the form 

sq(s,  t )  = H(s)&(s ,  t )  

s W ( s ,  t )  = H ( s  + l)&(s + 1, t ) .  

(73) 

(74) 

and 

For some practical problems the values of q(u ,  t )  and W(u,  t )  are required at zero 
energy (or infinite lethargy). In fact, q ( a ,  t )  corresponds, in the case of slowing-down 
atoms in a host medium, to the profile of stopped or implanted atoms. Similarly 
W(c0, t )  corresponds to the total energy deposited to the host medium by the slowing- 
down particles. We see therefore from the properties of Laplace transforms that 

q(c0, t )  = lim sQ(s, t )  (75) 
s-0 

and 

~ ( c 0 ,  t )  = lim s+o s W ( s ,  t ) .  (76) 

As an example of this technique consider equation (27), where 
e - ( A  -k)m(t,O) 

sq(s, t )  = H (s )P(s 1 
T O O )  

Since H ( s ) P ( s )  = P(s  + k - A ) ,  we can write immediately 

In fact q ( a ,  t )  is only bounded for k > A  for obvious physical reasons. 
Similarly we may write 

e-(A-k)m(f,O) 

W(c0, t )  = P(k+A-1)  
7 0 0 )  

x lom dwo eCWo exp(-e(k-A)WOG(t))- - 
2.rrl I L dp P ( p )  ePWo 

(79) 

where k > A  - 1. 
These expressions for q(c0, t )  and W(c0, t )  may be written conveniently in terms of 

the Laguerre polynomial expansion discussed earlier. The nice aspect of these results is 
that no Laplace inversion is necessary. 
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5. The difference equation 

It is clear that the role played by the solution of the difference equation is a crucial one 
and therefore some investigation of this function will be worthwhile. The equation for 
study is therefore 

P(s + h )  = H(s )P(s ) .  (80) 

The theory of first-order difference equations of this type is fully discussed by 
Milne-Thomson (1933) and Levy and Lessman (19.59) and the results presented here 
are based upon the work of these authors. 

We note first that for values of s which are integral values of h, i.e. nh where n is an 
integer, we may obtain by induction the following results: 

P(s) = n " 1  - 
P ( s  + (n  + 1)h)  ,=o H ( s  + Ih) 

P(s - ( n  + 1)h) "+I  1 
P(S 1 1 x 1  H ( s  -1h) 

= n  - 
These results have been used in equations (33) and (38) above. 

If a general expression for P(s )  is desired the problem is generally more difficult. 
However, there are some special cases worthy of discussion. For example, if H ( s )  is 
given by 

then a general solution of (80), apart from an arbitrary factor, is 

We see therefore that in the special case considered earlier where 

- YS H ( s )  = - 1 + ys 

and h = k - A  

It was by using this expression in equation (32) that we obtained equation (4.5). 

the behaviour for large Is/  is known. Thus we may write 
It is possible to obtain expressions for P(s )  for more general forms of H ( s )  provided 

where f(j) is a factor which ensures that 

f(i) lim - 
i+- H ( j k )  
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Such a convergence factor is not too difficult to obtain. For example, in the case just 
considered 

f ( s  + j k )  - 1 - l /yjh as i j l+co 
- 1 / vjh = e  

Hence we may write 

which may be rearranged to the form 

But by definition (Levy and Lessman 1959) 

Hence equation (91) reduces to equation (86) apart from the arbitrary constant 
exp(-c/ yh). Thus by judicious choice of f( j )  we may obtain explicit expressions for 
P(s )  ; the subsequent Laplace inversion, however, is not always simple. 

6. Summary and discussion 

Two integro-differential equations have been solved explicitly. These equations arise 
in the theory of particle slowing down involving neutrons and fast atoms. Similar 
equations may also be found in other areas of statistical physics such as cosmic ray 
production, nuclear particle detectors and queueing theory (Bharucha-Reid 1960). It 
seems likely therefore that the techniques developed here will have wider application. 

The basis of the solution method relies upon the extension of an idea due to Waller 
(1966). This consists of the introduction of a function defined by a difference equa- 
tion which then renders the Laplace transformed equation amenable to solution by 
elementary methods. 

It is shown how some useful physical quantities arising in transport theory, e.g. 
slowing-down density and energy deposition, can be calculated rather easily from the 
Laplace transform of the solution of the integro-differential equations. 
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